Hallucination Detection in LLMs:
Fast and Memory-Efficient Fine-Tuned Models
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¢ Hallucinations in LLMs pose significant risks in safety- ¢ Faithful hallucinations occur when outputs deviate from
critical fields such as healthcare. instructions, while factual hallucinations produce content
that contradicts verifiable facts; both pose distinct
¢ Existing hallucination detection methods are often task- challenges for reliable LLM outputs.
specific or unreliable.
¢ Existing hallucination detection methods are often tailored
¢ Deep ensembles are effective but computationally to a specific task, limiting their versatility.
infeasible for large LLMs.
2 Current uncertainty-based approaches often rely on
¢ Scalable, resource-efficient approaches to uncertainty perturbations through sampling, which can be unreliable.
estimation are needed to enable reliable hallucination
detection in large-scale LLMs. ¢ Traditional deep ensembles scale linearly with the number

of parameters, making them infeasible for LLMs with
billions of parameters.
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Memory-Efficient Ensemble

BatchEnsemble Predictive Entropy
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W;=U @QV;, where V; =r;s; and r; € R™*%,5; € R H[P(x;|xp; D)] = _z P(x;|x-s; D)logP(x|xy; D)
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Savings in Memory Complexity Ensemble Approximation
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Low-Rank Adaptation (LoRA) Binary Classification
U = U, + BA, where B € R™",4 € R™" and U, is a pre-trained model fH[P(x¢|x<; D)]) =, where y € {0,1}

Classification Accuracy on Hallucination Detection

- ¢ Hallucination Detection: Developed an uncertainty-based
Method Faithfulness © Factual ©~ OOD * method capable of detecting both factual and faithful
(Ours) BatchEnsemble 97.8 68.0 62.4 hallucinations while maintaining effective performance.
(Ours) BatchEnsemble + NI 96.5 66.9 61.9 . " 2 e 5 e
emory-Efficient Ensemble: Demonstrate e feasibility
Hoika Binzande 2a LR I of using BatchEnsemble for large-scale LLMs with over 7B
Sample-Based 92.1 69.6 62.2 parameters, optimizing memory usage.
Predictive Performance ¢  Cost-Effective Training: Achieved significant reductions in
Dataset SQuAD MMLU training overhead by integrating LORA with BatchEnsemble,
Metric Exact Match © F1Score 1 Accuracy enabling the tralplng of a 4-member 7B parameter
Single Model 85.1 992 1 56.3 ensemble on a single A40 GPU.
(Ours) BatchEnsemble 85.9 93.4 6.7 ¢ Future Directions: Investigate the relationship between
(Ours) BatchEnsemble+NI 85.4 92.6 53.2 aleatoric uncertainty and faithful hallucinations, and
LORA Ensemble 68.4 84.4 44.6 epistemic uncertainty and factual hallucinations, to

improve detection strategies.
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